Category Archives: Piaget

Arcidiacono & Perret-Clermont (2010) – The Piagetian conservation-of-matter interview, revisited

Paper #1

In this paper, Arcidiacono & Perret-Clermont (2010) revisit the Piagetian conservation-of-matter interview in light of the theory of argumentation. The authors argue that children’s statements are co-constructed by them and their interviewers, within a specific institutional setting, i.e. the testing situation. While Piaget considered children’s statements as dependent on the cognitive level, Arcidiacono & Perret-Clermont describe children’s arguments as the result of a series of interactions with the tester and as a reaction to the tester’s framing of the interview. The authors claim that, during the Piagetian interview, adults’ interventions strongly influence the statements made by the child. Children’s thoughts do not show up as clear and distinct ideas; they are expressed in a specific social context.

This article contains a number of interesting reflections on the nature of children’s discourse within the Piagetian interview, but it leaves an important issue unresolved. Sometimes the authors seem simply to state that the specific interviewers that participated in the examples discussed did not meet the Piagetian standards for not interfering with children’s spontaneous thought and for not inducing the answers. Alternatively, they sometimes imply that the interviewers’ interference and suggestions are unavoidable because of the very nature of the Piagetian interview and of human communication in general. Which of these is the case for the authors is not clear. They claim, for example, that “the adult repeatedly diverged from the intentions of the Piagetian script and consequently induced answers to the child” and that Piaget’s intentions were “misunderstood” by the interviewers (which implies that the interviewers were not very good), and yet also claim that these diversions “might be an inevitable condition of the situation”.

In conclusion, the authors claim that, according to the Piagetian ideal, “the adult has to offer a real place for debating, so as to give epistemic agency to the child” yet they don’t make it clear whether this ideal can be achieved in the real world or not.

Alison Gopnik and the mirror of nature

Gopnik’s (1996) argues that scientific knowledge (as well as children’s theories) stems from a device-powered ability. In her candid account, a child (or a scientist) discovers truths by using a truth-discovering device we’re all equipped with. Individuals (children and scientists) have direct access to truths; and truths involve a two-way relationship: they are a mirror-like match between the individual’s representations and the world (as opposed to, for example, being the result of a social, normative, constructive process).

Gopnik acknowledges that epistemology has a normative component, but only in the sense that some epistemologists and philosophers of science prescribe the structure of the ideal scientific inquiry. Indeed, when most scholars talk about traditional epistemology schools (logical positivism, falsificationism, etc.) as being “normative” they mean exactly that kind of external, prescriptive attitude. Yet there is another way of understanding the normative side of epistemology (one that Piaget, for example, emphasizes frequently): epistemology is normative, in this second sense, because its object of study (science) is inherently normative; that is, because scientists try to conduct their research according to certain binding rules and, moreover, they try to formulate laws, rules and models that explain, not just how the world works, but also why the world must work in that way. Scientists use a deontological language when talking about their research; they believe some theories are bad and others are good; they require that scientific statements be justified; they demand other people to be fair in their evaluation of their theories. Epistemologists, in this second version of “the normative,” do not try to impose prescriptions from the outside, but to reveal what is inherently normative in actual science. Gopnik does not take into account this inherently normative nature of science, but she reduces normativity to the traditional epistemologist’s recommendation of certain rules of enquiry to the scientist.

Hand in hand with Gopnik’s neglect of the internal normativity of science, she sees science as stemming from an individual, internal ability to “find the truth,” that is, as something that “people do” (they eat, they sleep, they have sex, they find the truth). She consequently endorses a naïve realism according to which science “gets it right” and succeeds at “uncovering the truth” (Gopnik, 1996, p. 489), and this because “human beings are endowed by evolution with a wide variety of devices that enable us to arrive at a roughly veridical view of the world” (Gopnik, 1996, p. 487). She claims that human cognition is a system that “gets at the truth about the world” because “it is designed by evolution to get at the truth about the world” (Gopnik, 1996, p. 501).  I will not delve into the obvious circularity of such assertions (briefly: to assess whether our cognitive device works well and yields true representations we use that very device). But I believe that this very way of talking about cognition (“we have a device inside our head that operates with rules and representations and is ready-made to find the truth”) makes it impossible from the start to provide an adequate account of a) the normative and b) the social aspects of cognition, since social norms are in this view necessarily reduced to an external source of information, i.e., to the device’s input. Gopnik’s words: “They [mental representations and rules] may be deeply influenced by information that comes from other people, but they are not merely conventional and they could function outside of any social community” (Gopnik, 1996, p. 488). Furthermore, when Gopnik talks about the institutions of science or the division of labor in science, she sees social organization simply as a way of being more effective at achieving a certain goal (reaching truths). It’s a merely technical, means-end reasoning.

What concept of “truth” is Gopnik using when she asserts that the human cognitive system produces truths? She seems to rely on a naïve version of truth as correspondence: our cognitive system is like a mirror of the world; it produces representations that match up to the outside world (Gopnik, 1996, p. 502). Needless to say, this correspondence view of truth has been criticized and destroyed over and over again by philosophers and epistemologists from all schools; it is untenable for a number of reasons. The three main reasons: 1) knowledge processes do not imitate reality but to impose certain abstract, mathematical or relational models unto the world, 2) consequently, our mental representations are not copies of the world; rather, they contain abstract concepts (atom, mind, time, gravity, homeostasis) that radically redescribe the object we are trying to know; and 3) we only say that some things are true within a certain form of life or cultural context that provides the rules to evaluate what is true and what is not.

Gopnik treats truth as a natural fact and as a tangible property of representations, which are also pretty much treated as tangible things. Yet the concept of “truth” only exists within certain normative systems; and normative systems only exist in culture, not in nature; truths are not things; we say that certain propositions or theories are “true” always in the context of complex, relational systems such as science. Animals try to solve concrete problems, but they don’t search for the truth. Human interest in the truth cannot derive from having a natural device implanted in our brain only; something else needs to be added to the mix.

Most interesting theories about the social origins of scientific knowledge do not focus on “socially transmitted information” or “social input” but on social structure. Yet Gopnik finds it “hard to see how a particular social structure, by itself, could lead to veridicality” (Gopnik, 1996, p. 491).

It is in my opinion much easier to see how social structure could lead to veridicality than how a computer-like device could do so. Social structure creates institutions that formalize adversarial scenarios, so that one party is in charge of attacking a position and the opposite party is in charge of defending it. They enforce rules, in many contexts (from editorial boards to legislatures and courts) that specify what counts as a legitimate argument and as valid proof. Moreover, institutions create authorities that rule above the parties in the dispute and are in charge to adjudicate between them, to say who’s right, “who has the truth”. States have succeeded in creating the first institutions that were “impersonal” in the sense that they represented abstract principles or the common good (rather than the interest or the point of view or a specific individual); once people got used to think in terms of impersonal principles (the Greeks called them arches) they applied this form of thought to nature and started discovering principles and laws in the world around us. I’m collapsing into one paragraph thousands of pages written by very diverse authors (Hegel, Durkheim, Vernant) who recognized that social institutions created something absent in the natural world: truth.

If you accept at least provisionally that what is particular about science is not only that it gets things right (its efficacy) but also that produces legal-like knowledge (legitimate, verifiable knowledge that aims at universal validity), you can start to see what it is that social structure adds to the mix.

Says Gopnik: “An important point of the empirical developmental work, and a common observation about science, is that the search for better theories has a kind of internally-driven motivation, quite separate from the more superficial motivations provided by the sociology. From our point of view, we make theories in search of explanation or make love in search of orgasm” (Gopnik, 1996, p. 498). Her idea is that evolution built our internal device in such a way that would feel thrills of pleasure when finding the truth. Yet I believe that the passion of scientists has more to do with a social feeling, namely justice. They strive for truth with the passion that a rebel fights for justice. As when the equation works, the pleasant experience results from the recognition that the result is fair, that the right explanation is given its due value.

Summing up, my argument against Gopnik (1996) proceeds in three steps: 1) She doesn’t recognize the normative dimension of scientific knowledge, so she imagines we have a scientific-knowledge device that is effective, but not one that produces valid, legitimate knowledge; 2) The non-normative conception of truth (which is conceived as a match between the mind and the world) makes her embrace a naïve realism; 3) this narrows, or rather kills, the power of her theory to include the social aspects of knowledge. The main flaws in Gopnik’s theory, therefore, derive from her understanding of scientific activity as resulting from a mere ability to investigate and find truths rather than as a social, normative practice.

Gopnik, A. (1996). The scientist as child. Philosophy of Science, 63, 485–514. Retrieved from http://www.jstor.org/stable/188064

Alison Gopnik as a child

Shamelessly, Gopnik starts her seminal article on The Scientist as Child (Gopnik, 1996) by claiming that “recently, cognitive and developmental psychologists have invoked the analogy of science itself” (p. 485). Recently! That analogy is at the core of the Piagetian enterprise. Indeed, Piaget founded the field of cognitive development some 80 years ago by appealing to that very analogy, i.e., by claiming that the fields of epistemology (or philosophy of science) and developmental psychology can illuminate each other because there are functional similarities between the processes of knowledge acquisition in children and in scientists. The insight that the scientific investigation of children’s cognitive development sheds light on the history of science and vice versa is 100% Piagetian. Yet Gopnik discusses it as if it were a new idea.

Gopnik knows that Piaget already said this. In other writings she’s honest enough to admit she knows about Piaget’s systematic comparison between children and scientists, although she also claims that she means it in a different way; i.e., she affirms that the relationships she establishes between the fields of child psychology and epistemology are not the same as in Piaget’s. Yet in this particular paper (Gopnik, 1996) and in many other places (most notably, her lectures to undergraduates, of which I will speak some day) she pretends that it’s she and her theory-theory colleagues who have coined this famous analogy. In this particular article, Piaget’s name is not even mentioned.

There are many other ideas that are originally Piagetian and for which the Swiss researcher gets no credit at all. For example: that theory change is a process that goes through different stages: disregard or denial of uncomfortable evidence, compromise solutions, generalized crisis and substitution by a new theory. And, of course, the basic contention that children have theories in a sense comparable to scientists. She also claims: “Theory change proceeds more uniformly and quickly in children than in scientists, and so is considerably easier to observe, and we can even experimentally determine what kinds of evidence lead to change. In children, we may actually be able to see “the logic of discovery” in action” (Gopnik, 1996, p. 509). This is Piaget talking! Yet she presents these ideas as if they were completely her own.

This is not my main criticism of Gopnik’s work, of course. The central problem, in my opinion, is the way she understands science (as result of a mere ability to investigate and “find truths” rather than as a normative practice). I’ll talk about it in a different post.

Gopnik, A. (1996). The scientist as child. Philosophy of Science, 63, 485–514. Retrieved from http://www.jstor.org/stable/188064

Kitchener on Piaget as a sociologist

This post presupposes many others. Don’t start here.

I’ve just read Richard Kitchener’s excellent paper on Jean Piaget as a sociologist (Kitchener, 1991). He rightly emphasizes the normative aspect in Piaget’s approach to knowledge. Part of the unfair criticism that the Piagetian legacy endures these days comes from authors who neglect or just don’t understand such normative aspect (A. Gopnik’s publications are good examples of this intellectually shortsighted attitude). I’ve insisted on this topic in previous posts such as this one or this one or this one, and will be writing more about it in the future.

What do we mean when we say that epistemic knowledge and logic have an inescapable normative component? Our point is that individuals engaged in the construction of epistemic knowledge are different from animals in that they are not simply trying to solve problems posed by their environment (that is, they’re not just trying to be effectively adapted to the world) but they are trying to produce valid, legitimate knowledge that they can defend by means of reasons when questioned by interlocutors or adversaries. Ideally, these interlocutors challenge each other as equals, that is, they don’t use the argument from authority. “The need to justify one’s beliefs or actions emerges only under the particular social conditions of equality” (Kitchener, 1991, p. 433). Under conditions of equality people tend to cooperate with each other rather than to constrain or force each other to do certain things or to accept certain propositions. Rationality, in Piaget’s and Kitchener’s view, is a byproduct of peer interaction: cooperation generates reason (Kitchener, 1991, p. 430). Logic, to sum up, arises from interactions between individuals: “The Cartesian solitary knower, separate from social interaction with others, cannot construct an equilibrated logic” (Kitchener, 1991, p. 435).

Similarly, objectivity results from mutual exchanges of subjective perspectives between individuals: being objective “…requires an awareness that what one thinks may not coincide with what is true” (Kitchener, 1991, p. 429). This self-vigilance or, as Kitchener calls it, self-consciousness, is the psychological activity of an individual thinking and arguing with others, and subjecting herself to the normative rules of reasoning. “Rules of reasoning are thus normative obligations binding upon the individual (…) Reasoning in general requires normative principles of inference and the most adequate one is normative reciprocity” (Kitchener, 1991, pp. 425-426).

Kitchener illustrates this last point with a famous example from Piaget’s Études sociologiques: “two individuals, on opposite banks of a river, are each building a pillar of stones across which a plank will go as a bridge”. This creates a problem of action coordination between individuals that can be characterized in logical terms (correspondence, reciprocity, addition or subtraction of complementary actions). But the bridge example is an instance of what I call the technological approach to human action. That is, Piaget (and Kitchener) focus here not on the structure of social relations (the rules and institutions that organize life in common) but on the practical, effective coordination of actions that are a (more or less effective) means toward an end (building the bridge). The bridge example could have as well came out of the desk of a Vygotskian scholar, since it fits with the features of activity as defined by the socio-historical school: people organized in order to achieve a common goal and using tools available in their cultural context. The emphasis here, to say it again, is on technical action and not in the sense of justice inherent to social relations.

So I have two (external?) criticisms of Kitchener-Piaget: 1) to understand normativity (of social relations, and epistemic normativity as well) you need to pay attention to social institutions as they embody a sense of justice; a technical or technological view of human action won’t do; 2) institutions come with many flavors, reciprocity being a characteristic of one particular (albeit important) institution (contract). But there are other institutions (some of them based on authority) that are legitimate and can therefore be a source of valid statements. (There was rational argumentation before the emergence of Athenian democracy).

Kitchener, R. F. (1991). Jean Piaget: The Unknown Sociologist? The British Journal of Sociology, 42(3), 421–442. doi:10.2307/591188

 

“Let’s trade” and “my turn”

My son L. is 3y 1m old. He’s started recently to use the expression “let’s trade” (“te cambio”). That is: he produces speech acts aimed at swapping objects with another person. For instance, he gives away his glass of milk in order to obtain a yoghurt cup I have. We exchange goods. He seems to understand that the proto- contract we thus celebrate involves the mutual surrender and handing over of possessions. The rules of reciprocity are no doubt regulating this interaction. Which doesn’t mean that the child can understand conceptually, let alone articulate, such rules.

In addition, when playing with other children, L. knows how to claim his turn to use a toy (shouts “¡Turno mío!”). He also uses this expression in other contexts; for instance, to demand his turn to drink mate (in a mate round shared with adults). Again: his understanding of the reciprocity rules involved is perhaps incipient. But L. is clearly starting to master the rhetorical forms that allow efficient access to the desired objects.

My hypothesis: the child first masters the rhetorical forms, and only later the conceptual content. Piaget’s prise de conscience (the conceptual, explicit insight) is the final product of a process that starts with immediate, un-reflected action. The process goes from the periphery of action to the center of explicit, conceptual thinking. Differently from Piaget, however, in the periphery I do not see the actions of an organism but the utterances of a retor.

Piaget and the logic of action

I’m reading Prof. Castorina’s lectures on Genetic Epistemology. They’re quite good.

One of the points he explains very clearly is that, for Jean Piaget, logic emerges out of the individual’s coordination of actions (or action schemata). Piaget considers that one of the basic features of all living forms is their tendency to self-organize. He thought that this principle or “functional invariant” applied to all levels of development, from basic organic forms to complex human behavior. It is an essential part of self-preservation that organisms produce complex and organized structures and that they maintain such organization actively throughout time in order to survive. Successful self-organization is thus the counter-part of successful adaptation; they are parallel processes, two sides of the same coin.

I buy it up to that point. But Piaget extends this biological framework further: intelligent life is manifestation of life as such; the same laws that apply to living forms also apply to intelligence and to cognitive development. Logic derives from action, and action is understood in biological terms. Logic reflects the inner organization of action. For example, the organized actions of babies that move, order and categorize objects are at the root of the (developmentally later) mental operations of classification, seriation, number, etc. The very logical principle of “conservation,” so central to Piaget’s theory, derives from the organism’s tendency to self-organize and self-preserve.

It is as if a logical instinct were inherent to human action. For Piaget, there’s a continuum that goes from biology, through action, up to logic and scientific knowledge.

In my opinion, Piaget underestimates the discontinuities between animal cognition and human knowledge. I consider the latter as an institutional phenomenon (I try to explain in other places). As I see it, the deontological nature of human knowledge is not reducible to biological action.